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A General Iterative Regularization Framework For
Image Denoising

Michael R. Charest Jr.†, Michael Elad‡, Peyman Milanfar§

Abstract— Many existing techniques for image denoising can
be expressed in terms of minimizing a particular cost function.
We address the problem of denoising images in a novel way by
iteratively refining the cost function. This allows us some control
over the tradeoff between the bias and variance of the image
estimate. The result is an improvement in the mean-squared
error as well as the visual quality of the estimate. We consider
four different methods of updating the cost function and
compare and contrast them. The framework presented here
is extendable to a very large class of image denoising and
reconstruction methods. The framework is also easily extendable
to deblurring and inversion as we briefly demonstrate. The
effectiveness of the proposed methods is illustrated on a variety
of examples.

Keywords: regularization, image denoising, iterative, bias,
variance

I. INTRODUCTION

Consider the noisy image y given by

y = x + v (1)

where x is the true image that we would like to recover and
v is zero-mean additive white noise that is uncorrelated to
x and with no assumptions made on its distribution. Note
that for ease of notation we carry out all of our analysis with
vectors representing 1-D signals, though the treatment is valid
in multiple dimensions.

A very general technique for estimating x from the noisy
image y is to minimize a cost function of the form

x̂ = arg min
x

C(x,y). (2)

Some specific examples of this are when C(x,y) =
H(x,y) + J(x) and H(x,y) = 1

2‖y − x‖2. The estimate
then becomes

x̂ = arg min
x

{
1
2
‖y − x‖2 + J(x)

}
(3)

where J(x) is a convex regularization functional such as
those in Table I. The parameter λ controls the amount of
regularization.

For the regularization term corresponding to the bilateral
filter, Sn is a matrix shift operator and Wn is a weight
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Denosing Technique J(x)

Tikhonov λ
2
‖x‖2

Total Variation [1], [2] λ‖|∇x|‖1
Bilateral [3], [4] λ

2

∑N

n=−N
[x − Snx]T Wn [x − Snx]

TABLE I

VARIOUS DENOISING TECHNIQUES AND THEIR ASSOCIATED

REGULARIZATION TERMS.

matrix where the weights are a function of both the radiometric
and spatial distances between pixels in a local neighborhood
([3],[4]).

Figure 1 is an example of the denoising ability of the
bilateral filter on an image with added white Gaussian noise.
By looking at the estimate residual we notice that we have
removed some of the high frequency content of the image
along with the noise. This is true more generally with other
denoising techniques as well. In this paper, we now turn our
attention to recovering this lost detail.

II. ITERATIVE REGULARIZATION METHODS

The general framework that we present here seeks to
improve our image estimate by iteratively updating the cost
function of our choosing. We can express this as

x̂k = arg min
x

Ck(x,y). (4)

Various manifestations of this iterative regularization proce-
dure exist. We present four different algorithms for performing
the cost function update. Each algorithm seeks to extract lost
detail from the the residual y − x̂k in a unique way.

Using the operator B(·) to denote the net effect of the
minimization in (4), we formulate the iterative regularization
methods as

1) x̂k+1 = B
(
y +

∑k
i=1(y − x̂i)

)
,

2) x̂k+1 = B(y) + B
(∑k

i=1(y − x̂i)
)

,

3) x̂k+1 = B(y) +
∑k

i=1 B(y − x̂i), and
4) x̂k+1 = B(y) +

∑k
i=1 (B(y) − B(x̂i))

= (k + 1)B(y) −∑k
i=1 B(x̂i).

The first method was recently proposed in [1] by Osher et
al. We propose the other three methods as alternatives, where
Method (3) is a generalization of Tukey’s ”twicing” idea [5].
Notice that it is evident, from the above definitions, that if
B(·) is naively regarded as a linear operator, all these options
are equivalent.
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(a) (b)

(c) (d)

Fig. 1. (a) Detail of the original ’Barbara’ image (b) ’Barbara’ with added
while Gaussian noise of variance 29.5 (PSNR= 33.43dB) (c) The result of
minimizing the Bilateral cost function for the noisy image (b) (MSE= 19.30)
(d) The residual (b)-(c)

III. DESCRIPTION OF ITERATIVE REGULARIZATION

METHODS

In this section we will discuss the implementation of each of
the iterative regularization algorithms for the general denoising
cost function in (3). Additionally, the general formulation is
presented.

A. Method 1: Osher et al.’s Method [1]

The work of Osher et al. improves the estimate that results
from the cost function in (3) via the following algorithm,
which we here call ”Osher’s Iterative Regularization Method”

x̂k+1 = B
(

y +
k∑

i=1

(y − x̂i)

)
, (5)

with x̂0 = 0.
This can also be written as

x̂k+1 = B (y + vk) , (6)

with x̂0 = 0, v0 = 0, and

vk+1 = vk + (y − x̂k+1). (7)

The quantity vk can be interpreted as a cumulative sum of the
image residuals.

We note that the sum of the residuals have been added back
to the noisy image and processed again. The intuition here is
that if, at each iteration, the residual contains more signal than
noise, our estimate will improve. A block diagram illustrating
this method is shown in Figure 2.

B(·)

−

+
x̂k

x̂k+1

vk

vk+1

y

Fig. 2. Method 1 Block Diagram

Osher’s method refines the more general cost function
argminx {H(x,y) + J(x)} as

x̂k+1 = arg min
x

{H(x,y) + J(x) − 〈x,pk〉} (8)

where p0 = 0 and pk+1 = pk +
[

∂[H(x,y)]
∂x |x = x̂k+1

]
are subgradients of J(x) at 0 and x̂k+1 respectively. The
equivalence of this form and (5) can be verified by substituting
H(x,y) = 1

2‖y − x‖2 and comparing the first derivatives.

B. Method 2

This iterative regularization method is formulated as:

x̂k+1 = B(y) + B
(

k∑
i=1

(y − x̂i)

)
(9)

or

x̂k+1 = x̂1 + x̃k

= x̂1 + argmin
x

⎧⎨
⎩1

2

∥∥∥∥∥
k∑

i=1

(y − x̂i) − x

∥∥∥∥∥
2

+ J(x)

⎫⎬
⎭

= x̂1 + argmin
x

{
1
2
‖vk − x‖2 + J(x)

}
. (10)

where x̂1 and vk are the same as in Method 1. We illustrate
this method in Figure 3.

B(·)

x̂k x̂k+1vk+1

y

B(·)

−
+

vk

Fig. 3. Method 2 Block Diagram

Method 2 refines the more general cost function
argminx {H(x,y) + J(x)} as

x̂k+1 = x̂1 + arg min
x

{H(x,y − x̂1) + J(x) − 〈x,pk−1〉}
(11)

with p0 = 0 and pk+1 = pk +
[

∂[H(x,y)]
∂x |x = x̂k+2

]
.

The equivalence of this form and (10) can be verified by
substituting H(x,y) = 1

2‖y − x‖2 and comparing the first
derivatives.
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C. Method 3: Iterative ”Twicing” Regularization

In his book [5], published in the mid 1970’s, Tukey pre-
sented a method he called ”twicing” where a filtered version
of the data residual was added back to the inital estimate x̂0

as
x̂ = x̂0 + B(y − x̂0). (12)

Tukey’s original motivation for this was to provide an im-
proved method for data fitting that would go beyond a direct
fit and incorporate additional ”roughness” into the estimate
in a controlled way. The same year, motivated by this idea,
this concept was used by Kaiser and Hamming [6] as a way
of sharpening the response of symmetric FIR linear filters.
Both references also mentioned the possibility of iterating this
process. Thus we here call the iterated version of Tukey’s
Twicing, ”Iterative Twicing Regularization” (ITR). We can
express this as:

x̂k+1 = x̂k + B(y − x̂k)
= x̂k−1 + B (y − x̂k−1) + B (y − x̂k)

...

= x̂1 +
k∑

i=1

B (y − x̂i) (13)

where x̂0 = 0 and x̂1 = B(y). The same idea has been
used in the machine learning community ([9]) under the name
L2Boost.

A block diagram illustrating this algorithm is shown in
Figure 4.

B(·)
+−

x̂k x̂k+1

y

Fig. 4. Method 3 Block Diagram

ITR refines the more general cost function
arg minx {H(x,y) + J(x)} as

x̂k+1 = x̂1 +
k∑

i=1

arg min
x

{H(x, 0) + J(x) − 〈x,pi−1〉}
(14)

with p0 =
[

∂[H(x,0)]
∂x |x = (y − x̂1)

]
and

pk+1 = pk +
[

∂[H(x,0)]
∂x |x = x̃k+1

]
, where x̃k =

arg minx {H(x, 0) + J(x) − 〈x,pk−1〉} and x̃0 = 0.
The equivalence of this form and (13) can be verified by
substituting H(x,y) = 1

2‖y − x‖2 and comparing the first
derivatives.

D. Method 4: Iterative Unsharp Regularization

The process of unsharp masking is a well-known technique
[7]. The process consists of subtracting a blurred version of

an image from the image itself. The fourth algorithm for
iterative regularization that we present is very similar in spirit
to unsharp masking. We call this method ”Iterative Unsharp
Regularization” (IUR) and formulate it as:

x̂k+1 = x̂k + B(y) − B(x̂k)
= x̂k−1 + (B(y) − B(x̂k−1)) + (B(y) − B(x̂k))

...

= x̂1 +
k∑

i=1

(B(y) − B(x̂i)) (15)

where x̂0 = 0 and x̂1 = B(y).
We illustrate this method in Figure 5.

B(·)
−

+
x̂k x̂k+1

y B(·)

Fig. 5. Method 4 Block Diagram

IUR refines the more general cost function
argminx {H(x,y) + J(x)} as

x̂k+1 = x̂1+
k∑

i=1

x̂1−
k∑

i=1

argmin
x

{H(x, x̂1) + J(x) − 〈x,pi−1〉}
(16)

with p0 = 0 and pk+1 = pk +
[

∂[H(x,x̂1)]
∂x |x = x̃k+1

]
, where

x̃k = arg minx {H(x, x̂1) + J(x) − 〈x,pk−1〉} and x̃0 = 0.
The equivalence of this form and (15) can be verified by
substituting H(x,y) = 1

2‖y − x‖2 and comparing the first
derivatives.

As a sidenote, we mention here that all four of the above
methods can be considered for the more general measurement
model:

y = Ax + v, (17)

where A is a convolution operator. The cost function
that we wish to iteratively refine now would become
argminx

{
1
2‖y − Ax‖2 + J(x)

}
. By a simple substitution

of H(x,y) = 1
2‖y − Ax‖2 into the general forms of the

four iterative regularization methods presented above, we can
derive the following:

1) x̂k+1 = B
(
y +

∑k
i=1 AT (y − Ax̂i)

)
,

2) x̂k+1 = B(y) + B
(∑k

i=1 AT (y − Ax̂i)
)

,

3) x̂k+1 = B(y) +
∑k

i=1 B (A(y − x̂i)), and
4) x̂k+1 = B(y) +

∑k
i=1 B(y) −∑k

i=1 AB (x̂i).
Again, the equivalence of these forms can easily be checked
by comparing their first-derivatives.

IV. BIAS-VARIANCE TRADEOFF

To measure the effectiveness of the algorithms, the mean-
squared error (MSE) is a natural choice. The MSE is defined
as

mse(θ̂) = E
[
(θ̂ − θ)2

]
(18)
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Total Variation Bilateral
Method 1 Figure 12 (a) Figure 13 (a)
Method 2 Figure 12 (b) Figure 13 (b)
Method 3 Figure 12 (c) Figure 13 (c)
Method 4 Figure 12 (d) Figure 13 (d)

TABLE II

THE DIFFERENT EXAMPLES WE PRESENT HERE. THE LOWEST MSE

RESULT IN EACH COLUMN IS ITALICIZED.

where θ̂ is the estimate and θ is the underlying signal. We can
rewrite the MSE as

mse(θ̂) = E

([(
θ̂ − E(θ̂)

)
+
(
E(θ̂) − θ

)]2)

= E

[(
θ̂ − E(θ̂)

)2
]

+ 2 E
[(

θ̂ − E(θ̂)
)(

E(θ̂) − θ
)]

+E

[(
E(θ̂) − θ

)2
]

= var(θ̂) + 0 +
(
E(θ̂) − θ

)2

= var(θ̂) + bias2(θ).

Thus, as is well-known, MSE is the sum of the estimate
variance and squared-bias [8].

Ref. [9] provides a bias-variance tradeoff analysis for L 2

boosting (which is equivalent to the ITR method), however,
some of the key assumptions made in that analysis do not
apply to the iterative regularization methods that we present
here (namely, in our general analysis B(·) is a non-linear
operator). In the next section, we present an experimental bias-
variance tradeoff analysis of the four iterative regularization
methods that we have discussed here.

V. EXPERIMENTS

Table II provides a brief summary of the combinations
of iterative regularization methods and functionals that we
illustrate in this section.

A. Bias-Variance Tradeoff

In Figure 6 we can see the MSE, variance, and squared-
bias of Osher’s iterative regularization method as a function of
iteration number. The image used for this simulation is shown
in Figure 7. In Figure 6 (a), we use the Bilateral cost ([10], [3])
in place of J(x) to carry out the cost function minimization
with parameters N = 2, σd = 1.1, and σr = 35; in (b) we
use the Total Variation cost ([2]) with λ = .18 and 50 steepest
descent iterations. Notice that the squared-bias decreases as
we iterate but the variance increases. The mean-square error
optimal estimate occurs where the sum of these two values
is at a minimum. The MSE, variance,and squared-bias have
been calculated via Monte-Carlo simulation (using 50 noise
realizations for each method).

For all of the iterative regularization methods presented
here, the bias of the first iteration of the estimate is expected
to be largest. This is especially true in the case of the Total
Variation and Bilateral functionals because we are using cost
functions that assume that the underlying image is piece-wise
constant [2], [10], [3]. Thus the first estimate, x̂1 = B(y)
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(a) Bilateral (b) Total Variation

Fig. 6. MSE, variance, and squared-bias of the estimates x̂k of the noisy
image shown in Figure 7 (b) using Osher’s iterative regularization method
(with (a) Bilateral and (b) Total Variation regularization functionals).

(a) (b) MSE=29.54

Fig. 7. (a) The original ’Barbara’ image (b) ’Barbara’ with added while
Gaussian noise of variance 29.5 (PSNR= 33.43dB)

is a piece-wise constant version of the image. That is to say
that much of the high-frequency detail in the image has been
removed along with most of the noise causing the image
estimate to appear piece-wise flat. See Figure 8 for an example.

(a) with texture (b) piece-wise constant

Fig. 8. Both the Bilateral Filter and the Total Variation filter make an
assumption of an underlying piece-wise constant image. Thus the estimates
that result from these processes have a piece-wise flat appearance. (a)
Subsection of the ’Barbara’ image (b) The result of applying Total Variation
to (a).

As we continue to iteratively refine our general cost function
(4) we begin to add back some of that lost texture, thus the
squared-bias begins to decrease. However, since no method is
perfect, we do get a bit of noise added back as well; this causes
the variance to increase. At some point in the iterative process
we get the best tradeoff of restored texture and suppressed
noise; this is our optimal MSE estimate.

We achieve similar results for the ITR and IUR methods, as
can be seen in Figures 9, 10 and 11. The MSE, variance,and
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squared-bias for each of the methods have been calculated via
Monte-Carlo simulation (using 50 noise realizations for each
method). The Bilateral Filter parameters were chosen to yield
the best MSE for each of the methods.
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(a) Bilateral (b) Total Variation

Fig. 9. MSE of the estimates x̂k of the noisy image shown in Figure 7
(b) using iterative regularization methods 1-4 (with (a) Bilateral and (b) Total
Variation regularization functionals).
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Fig. 10. Variance of the estimates x̂k of the noisy image shown in Figure 7
(b) using iterative regularization methods 1-4 (with (a) Bilateral and (b) Total
Variation regularization functionals).
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Fig. 11. Squared-bias of the estimates x̂k of the noisy image shown in
Figure 7 (b) using iterative regularization methods 1-4 (with (a) Bilateral and
(b) Total Variation regularization functionals).

B. Iterative Regularization Using Total Variation Functional

For this experiment we add white Gaussian noise of variance
σ2 = 29.5 to the image ’Barbara’ shown in Figure 7 (a).
The resulting noisy image has a PSNR of 33.43dB and is
shown in Figure 7 (b). For this experiment we have selected the
Total Variation Filter [2] which has some control parameters
that determine the filter weights. These parameters, as well
as our regularization parameters, are tuned by hand until the

we obtain the estimate with the lowest mean-squared error for
each of the iterative regularization methods. In all four iterative
regularization methods, 50 steepest-descent steps were used to
minimize the cost function at each iteration of (4). The values
of λ used for method 1, method 2, method 3, and method 4
respectively were: λ = .18, λ = .21, λ = .7, and λ = .32.
The best MSE estimates produced by methods 1-4, are shown
in Figure 12 (a), (b), (c), and (d) respectively. The best way
to see the subtle differences between the methods is to look at
the residual |y − x̂k|, thus these are shown as well. A residual
that contains less structure and looks more like pure noise is an
indication of a better denoising algorithm. The MSE, variance,
and squared-bias of these examples correspond to the plots in
Figures 6 (b), 9 (b), 10 (b), and 11 (b).

C. Iterative Regularization Using Bilateral Functional

We repeat the same procedure as the previous experiment
using the Bilateral Filter instead of the Total Variation Filter.

The Bilateral Filter has three user defined parameters: kernel
size N , geometric spread σd, and photometric spread σr.
We list the values for these parameters that we used in this
experiment for completeness and refer the reader to [10]
and [3] for more information on the Bilateral Filter. In all
four iterative regularization methods we used N = 2 and
σd = 1.1. The values of σr used for method 1, method 2,
method 3, and method 4 respectively were: σr = 35, σr = 31,
σr = 14, and σr = 23. Since the Bilateral Filter minimizes it’s
associated cost function in one iteration ([3]) we only need to
apply the Bilateral once per iteration in each of the iterative
regularization methods. The best MSE estimates of the four
iterative regularization methods and their residuals are shown
in Figure 13. The MSE, variance, and squared-bias of these
examples correspond to the plots in Figures 6 (a), 9 (a), 10
(a), and 11 (a).

VI. CONCLUSIONS

Denoising algorithms that can be formulated as in (2), such
as the Bilateral Filter and Total Variation Filter, are frequently
used due to their ease of implementation and effectiveness. We
have shown that the iterative regularization methods which we
present here can improve on the results of these algorithms.

Method 2 appears to give the best results in the experiment
where the Total Variation functional is used. However, IUR
gives better results in the Bilateral experiment. Clearly the
different iterative regularization methods are useful and the
”best” method to use can vary depending on the regularization
functional and possibly even the particular image. This leaves
much room for further investigation of the exact relationship
between these different methods.
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